DAY I

DAY 2

$\left\{\begin{array}{l}\text { Phrase } \\ \begin{array}{l}\text { A case of juice boxes has } 8 \text { boxes in it. } \\ \text { Let c represent a case. How many total } \\ \text { juice boxes are there in c cases? }\end{array} \\ \begin{array}{l}\text { Leon is six years younger than Frank. Let } f \\ \text { represent Frank's age. How old is Leon? }\end{array} \\ \hline 3 \text { more than y } \\ \text { Each table holds the same amount of } \\ \text { students. There are } 24 \text { students at } t \text { tables. } \\ \text { How many students are at each table? }\end{array}\right.$

Tony is 8 years old. His sister Anna is 4 years less than twice his age.
Write a numerical expression for Anna's age. How old is Anna?

Miles has n number of baseball cards. He keeps the same number of cards in each of three boxes.

What expression represents the number of baseball cards Miles can put in each box?

DAY 3

	Animal Speed (mph) Ostrich 30 Camel 25 Sled Dogs 15 Horse 10

Choose 2 animals and create a table for each animal that shows the rule for their average speed.

Graph the resulting coordinate pairs on a coordinate plane.(draw a coordinate plane!)
Using the two animals that you chose, if they maintain their average speed, about how long would it take each to run 50 miles? Explain.

