Name \qquad Date \qquad

1. If possible, draw and label triangle $D E F$ so that side $\overline{D E}$ is $1 \frac{1}{2}$ inches long, side $\overline{E F}$ is 2 inches long, and the measure of the included angle, $\angle E$, is 100°.
2. Is it possible to draw another triangle so that one side is $1 \frac{1}{2}$ inches long, another side is 2 inches long, and the measure of the included angle is 100° while the remaining side and angles have measures different from those of triangle $D E F$? Explain.

Name \qquad Date \qquad
Determine if each set of lengths can be used to construct a triangle. If not, explain why not.

1. $5 \mathrm{~cm}, 8 \mathrm{~cm}, 12 \mathrm{~cm}$
2. 12 in., 12 in., 12 in.
3. $3 \mathrm{ft}, 6 \mathrm{ft}, 10 \mathrm{ft}$
4. In general, what must be true of three lengths in order for them to construct a triangle?
